Вариант № 64151

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 3:30:00
1

Ре­ши­те не­ра­вен­ство | минус x|\geqslant5.



2
Задание № 361
i

Функ­ция y= дробь: чис­ли­тель: 1, зна­ме­на­тель: синус x конец дроби не опре­де­ле­на в точке:



3
Задание № 546
i

На ри­сун­ке изоб­ра­же­ны раз­вер­ну­тый угол AOM и лучи OB и OC. Из­вест­но, что ∠AOC = 94°, ∠BOM = 126°. Най­ди­те ве­ли­чи­ну угла BOC.



4
Задание № 933
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.



5
Задание № 996
i

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.

 

a1,7
b1025,1


6
Задание № 48
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния 4 синус в квад­ра­те x плюс 12 ко­си­нус x минус 9=0.



7
Задание № 105
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 3 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка боль­ше левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те .



8
Задание № 370
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 36. Пло­щадь его бо­ко­вой по­верх­но­сти равна:



9
Задание № 1039
i

Опре­де­ли­те ост­ро­уголь­ный тре­уголь­ник, зная длины его сто­рон (см. табл.)

 

Тре­уголь­никДлины сто­рон

тре­уголь­ни­ка

ΔABC8 см; 15 см; 17 см
ΔMNK4 см; 5 см; 8 см
ΔBDC3 см; 4 см; 5 см
ΔFBC7 см; 8 см; 9 см
ΔCDE5 см; 11 см; 13 см


10
Задание № 1694
i

По­сле­до­ва­тель­ность (an) за­да­на фор­му­лой n-ого члена an  =  2n−1 · (10 − n). Най­ди­те ше­стой член этой по­сле­до­ва­тель­но­сти.



11
Задание № 771
i

В окруж­ность ра­ди­у­сом 6 впи­сан тре­уголь­ник, длины двух сто­рон ко­то­ро­го равны 9 и 8. Най­ди­те длину вы­со­ты тре­уголь­ни­ка, про­ве­ден­ной к его тре­тьей сто­ро­не.


Ответ:

12

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 135°. Вы­бе­ри­те все вер­ные утвер­жде­ния для дан­но­го мно­го­уголь­ни­ка.

1.  Мно­го­уголь­ник яв­ля­ет­ся вось­ми­уголь­ни­ком.

2.  В мно­го­уголь­ни­ке 40 диа­го­на­лей.

3.  Если сто­ро­на мно­го­уголь­ни­ка равна 2, то ра­ди­ус впи­сан­ной окруж­но­сти равен 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та .

4.  Пло­щадь мно­го­уголь­ни­ка со сто­ро­ной a можно вы­чис­лить по фор­му­ле S=2 левая круг­лая скоб­ка 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка a в квад­ра­те .

 

Ответ за­пи­ши­те в виде по­сле­до­ва­тель­но­сти цифр в по­ряд­ке воз­рас­та­ния. На­при­мер: 123.


Ответ:

13
Задание № 1704
i

На кру­го­вой диа­грам­ме пред­став­ле­на ин­фор­ма­ция о про­да­же 200 кг ово­щей в те­че­ние дня. Для на­ча­ла каж­до­го из пред­ло­же­ний А  — В под­бе­ри­те его окон­ча­ние 1  — 6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­ния Окон­ча­ние пред­ло­же­ния

А)  Масса (в ки­ло­грам­мах) про­дан­но­го кар­то­фе­ля равна ...

Б)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­ной ка­пу­сты мень­ше массы про­дан­ной свёклы, равно ...

В)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­ных по­ми­до­ров боль­ше массы про­дан­ных огур­цов, равно ...

1)   6

2)  30

3)  56

4)  110

5)  210

6)  28

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

14
Задание № 953
i

Най­ди­те зна­че­ние вы­ра­же­ния 6 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 ко­рень из 5 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 ко­рень из 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 5 плюс ко­рень из 7 пра­вая круг­лая скоб­ка минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: 35 конец ар­гу­мен­та .


Ответ:

15

По углам пря­мо­уголь­ной пла­сти­ны с пе­ри­мет­ром 448 см вы­ре­за­ли че­ты­ре оди­на­ко­вых квад­ра­та (см. рис.) с дли­ной сто­ро­ны, рав­ной 12 см. Края по­лу­чен­ной за­го­тов­ки за­гну­ли по ли­ни­ям 1−4 и по­лу­чи­ли ко­роб­ку в форме пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да объ­е­мом 48 дм3. Най­ди­те пло­щадь пря­мо­уголь­ной пла­сти­ны (в дм2).


Ответ:

16
Задание № 2021
i

На ко­ор­ди­нат­ной плос­ко­сти даны точки A(1; −3) и D(−5; −3). Точка С сим­мет­рич­на точке А от­но­си­тель­но оси абс­цисс, а точка В сим­мет­рич­на точке D от­но­си­тель­но на­ча­ла ко­ор­ди­нат. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­нияОкон­ча­ние пред­ло­же­ния

A)  Длина боль­шей диа­го­на­ли че­ты­рех­уголь­ни­ка ABCD равна ...

Б)  Длина наи­боль­шей сто­ро­ны че­ты­рех­уголь­ни­ка ABCD равна ...

B)  Пло­щадь че­ты­рех­уголь­ни­ка ABCD равна ...

1)  2 ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та

2)  36

3)  30

4)   ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та

5)  24

6)  6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

17

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _2 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 32 конец дроби пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 2 x минус 52=0, тогда зна­че­ние вы­ра­же­ния 7 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...


Ответ:

18
Задание № 1053
i

Най­ди­те уве­ли­чен­ное в 9 раз про­из­ве­де­ние абс­цисс точек пе­ре­се­че­ния пря­мой y  =  12 и гра­фи­ка не­чет­ной функ­ции, ко­то­рая опре­де­ле­на на мно­же­стве  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка и при x > 0 за­да­ет­ся фор­му­лой y=2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 8 пра­вая круг­лая скоб­ка минус 20.


Ответ:

19
Задание № 89
i

Из двух рас­тво­ров с раз­лич­ным про­цент­ным со­дер­жа­ни­ем спир­та мас­сой 100 г и 900 г от­ли­ли по оди­на­ко­во­му ко­ли­че­ству рас­тво­ра. Каж­дый из от­ли­тых рас­тво­ров до­ли­ли в оста­ток дру­го­го рас­тво­ра, после чего про­цент­ное со­дер­жа­ние спир­та в обоих рас­тво­рах стало оди­на­ко­вым. Най­ди­те, сколь­ко рас­тво­ра (в грам­мах) было от­ли­то из каж­до­го рас­тво­ра.


Ответ:

20
Задание № 629
i

Если  ко­си­нус левая круг­лая скоб­ка альфа плюс 12 гра­ду­сов пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 5 конец дроби , 0 мень­ше альфа плюс 12 гра­ду­сов мень­ше 90 гра­ду­сов, то зна­че­ние вы­ра­же­ния 9 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка альфа плюс 57 гра­ду­сов пра­вая круг­лая скоб­ка равно ...


Ответ:

21
Задание № 1782
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .


Ответ:

22

23
Задание № 1898
i

Дан па­рал­ле­ло­грамм ABCD, точка К лежит на пря­мой, со­дер­жа­щей сто­ро­ну ВС, так, что точка В лежит между точ­ка­ми К и С и  дробь: чис­ли­тель: KB, зна­ме­на­тель: BC конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби . От­ре­зок DK пе­ре­се­ка­ет сто­ро­ну АВ в точке Р, а диа­го­наль АС  — в точке Т. Най­ди­те длину от­рез­ка РТ, если DK  =  132.


Ответ:

24
Задание № 899
i

Пусть A= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 11 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка 2 минус 2} пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5,5 пра­вая круг­лая скоб­ка 11 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 11 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те 11.

Най­ди­те зна­че­ние вы­ра­же­ния 2A.


Ответ:

25
Задание № 1966
i

О на­ту­раль­ных чис­лах а и b из­вест­но, что  дробь: чис­ли­тель: a, зна­ме­на­тель: b конец дроби = дробь: чис­ли­тель: 6, зна­ме­на­тель: 17 конец дроби , НОД(a; b)  =  4. Най­ди­те НОК(a + b; 10).


Ответ:

26
Задание № 2150
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: a левая круг­лая скоб­ка a плюс 13 пра­вая круг­лая скоб­ка , зна­ме­на­тель: a в квад­ра­те минус 25 конец дроби минус дробь: чис­ли­тель: 4, зна­ме­на­тель: a плюс 5 конец дроби при a = целая часть: 4, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 .


Ответ:

27
Задание № 1180
i

Если x_1 и x_2  — корни урав­не­ния 2,5 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =80 плюс 6 в сте­пе­ни x минус 16 умно­жить на 3 в сте­пе­ни x , то зна­че­ние 3 в сте­пе­ни левая круг­лая скоб­ка x_1 плюс x_2 пра­вая круг­лая скоб­ка равно ... .


Ответ:

28
Задание № 2188
i

В тре­уголь­ной пи­ра­ми­де SABC бо­ко­вое ребро SA пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния ABC. Через се­ре­ди­ны ребер AB и SB про­ве­де­на се­ку­щая плос­кость, па­рал­лель­ная ребру BC. Най­ди­те зна­че­ние вы­ра­же­ния 3 · S, где S  — пло­щадь се­че­ния пи­ра­ми­ды этой плос­ко­стью, если BC  =  6, SA  =  8.


Ответ:

29
Задание № 450
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 64 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 16 конец дроби .


Ответ:

30
Задание № 720
i

Трое ра­бо­чих (не все оди­на­ко­вой ква­ли­фи­ка­ции) вы­пол­ни­ли не­ко­то­рую ра­бо­ту, ра­бо­тая по­оче­ред­но. Сна­ча­ла пер­вый из них про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. Затем вто­рой про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. И, на­ко­нец, тре­тий про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. Во сколь­ко раз быст­рее ра­бо­та была бы вы­пол­не­на, если бы трое ра­бо­чих ра­бо­та­ли од­но­вре­мен­но? В ответ за­пи­ши­те най­ден­ное число, умно­жен­ное на 6.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.